Cart (Loading....) | Create Account
Close category search window

Emulation and inversion of polarization-mode dispersion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kogelnik, H. ; Lucent Technol. Bell Labs, Holmdel, NJ, USA ; Nelson, L.E. ; Gordon, J.P.

When a fiber is characterized by measured polarization mode dispersion (PMD) vector data, inversion of these data is required to determine the frequency dependence of the fiber's Jones matrix and, thereby, its pulse response. This tutorial reviews the principal concepts and theory employed in approaches to PMD inversion and in the closely related emulation of PMD. We discuss three second-order emulator models and the distinction between the PMD vectors and the eigenvectors of the fiber's Jones matrix. We extend emulation and inversion to fourth-order and sixth-order PMD using higher order concatenation rules, rotations of higher power designating higher rates of acceleration with frequency, and representation of these rotations by Stokes' vectors.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 2 )

Date of Publication:

Feb. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.