Cart (Loading....) | Create Account
Close category search window
 

Transmission performance of 10-Gb/s 1550-nm transmitters using semiconductor optical amplifiers as booster amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yonggyoo Kim ; Dept. of Radio Eng., Korea Univ., Seoul, South Korea ; Hodeok Jang ; YongHoon Kim ; Jeongsuk Lee
more authors

We have demonstrated the transmission performance of 10-Gb/s transmitters based on LiNbO3 modulator using semiconductor optical amplifiers (SOAs) as booster amplifiers. Utilizing the negative chirp converted in SOAs and self-phase modulation induced by high optical power, we can successfully transmit 10-Gb/s optical signals over 80 km through the standard single-mode fiber with the transmitter using SOAs as booster amplifiers. SOAs can be used for booster amplifiers with a careful adjustment of the operating conditions. In order to further understand an SOA's characteristics as a booster amplifier, we model SOAs and other subsystems to verify the experimental results. Based on the good agreement between the experimental and simulation results, we can find the appropriate parameters of input signals for SOAs, such as extinction ratio, rising/falling time, and chirp parameter to maximize output dynamic range and available maximum output power (Po,max).

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 2 )

Date of Publication:

Feb. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.