By Topic

A novel self-routing address scheme for all-optical packet-switched networks with arbitrary topologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yuan, X.C. ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, China ; Li, V.O.K. ; Li, C.Y. ; Wai, P.K.A.

Pure all-optical packet-switched networks in which both header processing and packet routing are carried out in the optical domain overcome the bandwidth bottlenecks of optoelectronic conversions and therefore are expected to meet the needs of next generation high speed networks. Due to the limited capabilities of available optical logic devices, realizations of pure all-optical packet-switched networks in the near future will likely employ routing schemes that minimize the complexity of routing control. In this paper, we propose a novel self-routing scheme that identifies the output ports of the nodes in a network instead of the nodes themselves. The proposed address scheme requires single bit processing only and is applicable to small to medium size pure all-optical packet-switched networks with arbitrary topologies. Unlike traditional self-routing schemes, multiple paths between two nodes can be defined. An hierarchical address structure can be used in the proposed routing scheme to shorten the address.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 2 )