By Topic

Optimal error exponents in hidden Markov models order estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Gassiat ; Dept. of Math., Univ. Paris-Sud, Orsay, France ; S. Boucheron

We consider the estimation of the number of hidden states (the order) of a discrete-time finite-alphabet hidden Markov model (HMM). The estimators we investigate are related to code-based order estimators: penalized maximum-likelihood (ML) estimators and penalized versions of the mixture estimator introduced by Liu and Narayan (1994). We prove strong consistency of those estimators without assuming any a priori upper bound on the order and smaller penalties than previous works. We prove a version of Stein's lemma for HMM order estimation and derive an upper bound on underestimation exponents. Then we prove that this upper bound can be achieved by the penalized ML estimator and by the penalized mixture estimator. The proof of the latter result gets around the elusive nature of the ML in HMM by resorting to large-deviation techniques for empirical processes. Finally, we prove that for any consistent HMM order estimator, for most HMM, the overestimation exponent is .

Published in:

IEEE Transactions on Information Theory  (Volume:49 ,  Issue: 4 )