By Topic

Detection of seizure precursors from depth-EEG using a sign periodogram transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. J. Niederhauser ; Dept. of Electr. Eng., Swiss Fed. Inst. of Technol., Zurich, Switzerland ; R. Esteller ; J. Echauz ; G. Vachtsevanos
more authors

Brief bursts of focal, low amplitude rhythmic activity have been observed on depth electroencephalogram (EEG) in the minutes before electrographic onset of seizures in human mesial temporal lobe epilepsy. We have found these periods to contain discrete, individualized synchronized activity in patient-specific frequency bands ranging from 20 to 40 Hz. We present a method for detecting and displaying these events using a periodogram of the sign-limited temporal derivative of the EEG signal, denoted joint sign periodogram event characterization transform (JSPECT). When applied to continuous 2-6 day depth-EEG recordings from ten patients with temporal lobe epilepsy, JSPECT demonstrated that these patient-specific EEG events reliably occurred 5-80 s prior to electrical onset of seizures in five patients with focal, unilateral seizure onsets. JSPECT did not reveal this type of activity prior to seizures in five other patients with bilateral, extratemporal or more diffuse seizure onsets on EEG. Patient-specific, localized rhythmic events may play an important role in seizure generation in temporal lobe epilepsy. The JSPECT method efficiently detects these events, and may be useful as part of an automated system for predicting electrical seizure onset in appropriate patients.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:50 ,  Issue: 4 )