By Topic

Method for unsupervised classification of multiunit neural signal recording under low signal-to-noise ratio

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kim, Kyung Hwan ; Human-Comput. Interaction Lab., Samsung Adv. Inst. of Technol., Yongin, South Korea ; Sung June Kim

Neural spike sorting is an indispensable step in the analysis of multiunit extracellular neural signal recording. The applicability of spike sorting systems has been limited, mainly to the recording of sufficiently high signal-to-noise ratios, or to the cases where supervised classification can be utilized. We present a novel unsupervised method that shows satisfactory performance even under high background noise. The system consists of an efficient spike detector, a feature extractor that utilizes projection pursuit based on negentropy maximization (Huber, 1985 and Hyvarinen et al., 1999), and an unsupervised classifier based on probability density modeling using a mixture of Gaussians (Jain et al., 2000). Our classifier is based on the mixture model with a roughly approximated number of Gaussians and subsequent mode-seeking. It does not require accurate estimation of the number of units present in the recording and, thus, is better suited for use in fully automated systems. The feature extraction stage leads to better performance than those utilizing principal component analysis and two nonlinear mappings for the recordings from the somatosensory cortex of rat and the abdominal ganglion of Aplysia. The classification method yielded correct classification ratio as high as 95%, for data where it was only 66% when a k-means-type algorithm was used for the classification stage.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 4 )