By Topic

A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zozor, S. ; Signal Process. Inst., EPFL, Lausanne, Switzerland ; Blanc, O. ; Jacquemet, V. ; Virag, N.
more authors

The majority of models of wavefront propagation in cardiac tissue have assumed relatively simple geometries. Extensions to complicated three-dimensional (3-D) representations are computationally challenging due to issues related both to problem size and to the correct implementation of flux conservation. In this paper, we present a generalized finite difference scheme (GDFS) to simulate the reaction-diffusion system on a 3-D monolayer of arbitrary shape. GDFS is a vertex-centered variant of the finite-volume method that ensures local flux conservation. Owing to an effectively lower dimensionality, the overall computation time is reduced compared to full 3-D models at the same spatial resolution. We present the theoretical background to compute both the wavefront conduction and local electrograms using a matrix formulation. The same matrix is used for both these quantities. We then give some results of simulation for simple monolayers and complex monolayers resembling a human atria.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 4 )