Cart (Loading....) | Create Account
Close category search window
 

Application of immune algorithm to optimal switching operation for distribution-loss minimisation and loading balance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin, C.H. ; Dept. of Electr. Eng., Nat. Kaohsiung Univ. of Appl. Sci., Taiwan ; Chen, C.S. ; Wu, C.J. ; Kang, M.S.

The application of an immune algorithm for the optimal switching search problem to achieve loss minimisation and loading balance among feeders and main transformers is presented. This algorithm prevents the possibility of stagnation in the iteration process and achieves fast convergence for global optimisation. The efficiency of the immune algorithm to solve the problem is verified by comparing the computing time of the conventional binary integer programming for decision making of the switching operation. An interactive best-compromise method is also applied to solve the multiobjective distribution-feeder reconfiguration. Quantitative measures can be supplied to aid the decision-making process. A Taipower distribution system with 18 feeders is selected for computer simulation to demonstrate the effectiveness of the proposed methodology for solving the optimal-switching operation of distribution systems to minimise the power loss and simultaneously enhance the loading balance.

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:150 ,  Issue: 2 )

Date of Publication:

March 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.