By Topic

High resolution processing techniques for ultrasound Doppler velocimetry in the presence of colored noise. I. Nonstationary methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Kouame ; LUSSI, GIP Ultrasous Tours, France ; J. M. Girault ; F. Patat

Real-time flow velocity measurement is a practical issue in industrial and biomedical applications. Because their good frequency resolution, parametric methods such as autoregressive (AR) modeling and time-frequency distributions (TFD) are generally preferred to Fourier analysis. However, these methods become highly inaccurate in the presence of colored noise. We review here the principal parametric and nonparametric techniques and show their limitations in the estimation of Doppler frequency in the presence of strong colored noise. Different solutions to overcome these limitations are then proposed and compared using synthetic Doppler signals with colored noise.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:50 ,  Issue: 3 )