By Topic

Dynamic modeling and analysis of a bimodal ultrasonic motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Meng-Shiun Tsai ; Dept. of Mech. Eng., Nat. Chung Cheng Univ., Ming-Hsiung, Taiwan ; Cheng-Hsueh Lee ; Sheng-Hung Hwang

A dynamic model that includes four subsystems is developed to analyze the fundamental characteristics of a bimodal ultrasonic motor. The first subsystem is the driving circuit designed for the motor to achieve bidirectional motion. The stator is modeled as a Timoshenko beam, and the assumed mode energy method is used to obtain the dynamic equations. The normal interface force is represented by an elastic spring existing in between the tip of the stator and the moving platform. The interface forces are coupled into the dynamic formulations of the stator and the moving platform. The behavior of the force transmission between the stator and the moving platform are analyzed using the developed model. Transient and steady-state responses of the system are obtained by numerical simulation, and the results are validated by experiments. Furthermore, the existing of a nonlinear deadzone is predicted analytically, and the causes of this nonlinearity are clarified.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:50 ,  Issue: 3 )