Cart (Loading....) | Create Account
Close category search window
 

Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Campolo, D. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Sitti, M. ; Fearing, R.S.

In this paper, an efficient charge recovery method for driving piezoelectric actuators with low frequency square waves in low-power applications such as mobile microrobots is investigated. Efficiency issues related to periodic mechanical work of the actuators and the relationship among the driving electronics efficiency, the piezoelectric coupling factor, and the actuator energy transmission coefficient are discussed. The proposed charge recovery method exploiting the energy transfer between an inductor and a general capacitive load is compared with existing techniques that lead to inherent inefficiencies. A charge recovery method is then applied to piezoelectric actuators, especially to bimorph ones. Unitary efficiency can be obtained theoretically for purely capacitive loads while intrinsic losses such as hysteresis necessarily lower the efficiency. In order to show the validity of the method, a prototype driving electronics consisting of an extended H-bridge is constructed and tested by experiments and simulations. Preliminary results show that 75% of charge (i.e., more than 56% of energy) can be recovered for bending actuators such as bimorphs without any component optimization at low fields.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:50 ,  Issue: 3 )

Date of Publication:

March 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.