By Topic

PDF optimized parametric vector quantization of speech line spectral frequencies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. D. Subramaniam ; Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, CA, USA ; B. D. Rao

A computationally efficient, high quality, vector quantization scheme based on a parametric probability density function (PDF) is proposed. In this scheme, the observations are modeled as i.i.d realizations of a multivariate Gaussian mixture density. The mixture model parameters are efficiently estimated using the expectation maximization (EM) algorithm. A low complexity quantization scheme using transform coding and bit allocation techniques which allows for easy mapping from observation to quantized value is developed for both fixed rate and variable rate systems. An attractive feature of this method is that source encoding using the resultant codebook involves very few searches and its computational complexity is minimal and independent of the rate of the system. Furthermore, the proposed scheme is bit scalable and can switch seamlessly between a memoryless quantizer and a quantizer with memory. The usefulness of the approach is demonstrated for speech coding where Gaussian mixture models are used to model speech line spectral frequencies. The performance of the memoryless quantizer is 1-3 bits better than conventional quantization schemes.

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:11 ,  Issue: 2 )