By Topic

Artificial neural networks for RF and microwave design - from theory to practice

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qi-Jun Zhang ; Dept. of Electron., Carleton Univ., Ottawa, Ont., Canada ; K. C. Gupta ; V. K. Devabhaktuni

Neural-network computational modules have recently gained recognition as an unconventional and useful tool for RF and microwave modeling and design. Neural networks can be trained to learn the behavior of passive/active components/circuits. A trained neural network can be used for high-level design, providing fast and accurate answers to the task it has learned. Neural networks are attractive alternatives to conventional methods such as numerical modeling methods, which could be computationally expensive, or analytical methods which could be difficult to obtain for new devices, or empirical modeling solutions whose range and accuracy may be limited. This tutorial describes fundamental concepts in this emerging area aimed at teaching RF/microwave engineers what neural networks are, why they are useful, when they can be used, and how to use them. Neural-network structures and their training methods are described from the RF/microwave designer's perspective. Electromagnetics-based training for passive component models and physics-based training for active device models are illustrated. Circuit design and yield optimization using passive/active neural models are also presented. A multimedia slide presentation along with narrative audio clips is included in the electronic version of this paper. A hyperlink to the NeuroModeler demonstration software is provided to allow readers practice neural-network-based design concepts.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:51 ,  Issue: 4 )