Cart (Loading....) | Create Account
Close category search window
 

Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chung-Jr Lian, ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Kuan-Fu Chen ; Hong-Hui Chen ; Liang-Gee Chen

Embedded block coding with optimized truncation (EBCOT) is the most important technology in the latest image-coding standard, JPEG 2000. The hardware design of the block-coding engine in EBCOT is critical because the operations are bit-level processing and occupy more than half of the computation time of the whole compression process. A general purpose processor (GPP) is, therefore, very inefficient to process these operations. We present detailed analysis and dedicated hardware architecture of the block-coding engine to execute the EBCOT algorithm efficiently. The context formation process in EBCOT is analyzed to get an insight into the characteristics of the operation. A column-based architecture and two speed-up methods, sample skipping (SS) and group-of-column skipping (GOCS), for the context generation are then proposed. As for arithmetic encoder design, the pipeline and look-ahead techniques are used to speed up the processing. It is shown that about 60% of the processing time is reduced compared with sample-based straightforward implementation. A test chip is designed and the simulation results show that it can process 4.6 million pixels image within 1 s, corresponding to 2400 × 1800 image size, or CIF (352 × 288) 4 : 2 : 0 video sequence with 30 frames per second at 50-MHz working frequency.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

Mar 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.