By Topic

Bit vector architecture for computational mathematical morphology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. C. Handley ; Xerox Corp., Webster, NY, USA

A real-time, compact architecture is presented for translation-invariant windowed nonlinear discrete operators represented in computational mathematical morphology. The architecture enables output values to be computed in a fixed number of operations and thus can be pipelined. Memory requirements for an operator are proportional to its basis size. An operator is implemented by three steps: (1) each component of a vector observation is used as an index into a table of bit vectors; (2) all retrieved bit vectors are "ANDed" together; and (3) the position of the first nonzero bit is used as an index to a table of output values. Computational mathematical morphology is described, the new architecture is illustrated through examples, and formal proofs are given. A modification of the basic architecture provides for increasing operators.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 2 )