By Topic

Soft-magnetic rotational microwings in an alternating magnetic field applicable to microflight mechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miki, N. ; Dept. of Mechano-Informatics, Univ. of Tokyo, Japan ; Shimoyama, I.

This paper presents microsized soft-magnetic rotational wings in an alternating magnetic field. The wireless power supply as well as control of magnetic microwings are readily applicable to microflight mechanisms. As a magnetic material, soft magnetic material, such as nickel-iron alloy was deposited via electroplating, which is a well-developed MEMS batch process. The magnetization of the soft-magnetic device, however, changes its direction and magnitude during rotation, where the shape magnetic anisotropy of the wings plays a vital role. The principle of the wing rotation in an alternating magnetic field was elucidated theoretically and showed favorable agreement with the experimental results with large-sized models. The aerodynamic performances of soft magnetic rotational wings were evaluated, including the microrotational wings 165 μg in weight consisting of 0.9-mm-long magnetic wings made of electroplated nickel-iron alloy and an axis of wing rotation made of a sharpened glass tube. The micromagnetic rotational wings presented here were utilized for microflight mechanisms, which achieved successful flights.

Published in:

Microelectromechanical Systems, Journal of  (Volume:12 ,  Issue: 2 )