By Topic

Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming Kang ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; M. -S. Alouini

This paper extends Khatri (1964, 1969) distribution of the largest eigenvalue of central complex Wishart matrices to the noncentral case. It then applies the resulting new statistical results to obtain closed-form expressions for the outage probability of multiple-input-multiple-output (MIMO) systems employing maximal ratio combining (known also as "beamforming" systems) and operating over Rician-fading channels. When applicable these expressions are compared with special cases previously reported in the literature dealing with the performance of (1) MIMO systems over Rayleigh-fading channels and (2) single-input-multiple-output (SIMO) systems over Rician-fading channels. As a double check these analytical results are validated by Monte Carlo simulations and as an illustration of the mathematical formalism some numerical examples for particular cases of interest are plotted and discussed. These results show that, given a fixed number of total antenna elements and under the same scattering condition (1) SIMO systems are equivalent to multiple-input-single-output systems and (2) it is preferable to distribute the number of antenna elements evenly between the transmitter and the receiver for a minimum outage probability performance.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:21 ,  Issue: 3 )