By Topic

Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Frezza, F. ; Dept. of Electron. Eng., "La Sapienza" Univ. of Rome, Italy ; Pajewski, L. ; Schettini, G.

In this paper, an accurate and efficient characterization of a two-dimensional (2-D) electromagnetic band-gap (EBG) structures is performed, which exploits a full-wave diffraction theory developed for one-dimensional diffraction gratings. EBG materials constituted by 2-D arrays of dielectric rods with arbitrary shape and lattice configuration are analyzed, and the transmission and reflection efficiencies are determined. The high convergence rate of the proposed technique is demonstrated. Results are presented for both TE and TM polarizations, showing the efficiencies as a function of frequency and physical parameters. Comparisons with other theoretical results reported in the literature are shown with a very good agreement, and the authors' theory is also favorably compared with available experimental data. Useful design contour plots are reported by which a very immediate and accurate visualization of the band-gap configurations can be obtained, and design formulas are also included. Finally, the behavioral differences when a periodical defect is present are also highlighted.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 3 )