Cart (Loading....) | Create Account
Close category search window

A systematic and topologically stable conformal finite-difference time-domain algorithm for modeling curved dielectric interfaces in three dimensions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kosmanis, T.I. ; Dept. of Electr. & Comput. Eng., Aristotle Univ. of Thessaloniki, Greece ; Tsiboukis, T.D.

A systematic conformal finite-difference time-domain (FDTD) algorithm for the direct modeling of dielectric interfaces in three dimensions is presented in this paper. The straightforward procedure is based on the proper reformation of the grid cells in the vicinity of the dielectric surface, leading thus to the creation of five-faced prisms on the primary grid, apart from the standard hexagonal ones. The new scheme overcomes any topological deficiency that forbids the contour path FDTD and conformal FDTD technique to directly simulate dielectric boundaries, since it maintains the lattice duality. Therefore, no instabilities, even late-time ones, are observed. On the other hand, the accuracy obtained, even with very coarse meshes, is very good as is proved by the numerical analysis of various resonance problems.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 3 )

Date of Publication:

Mar 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.