By Topic

High-mobility modulation-doped SiGe-channel p-MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Verdonckt-Vandebroek, S. ; IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA ; Crabbe, E.F. ; Meyerson, B.S. ; Harame, D.L.
more authors

A novel subsurface SiGe-channel p-MOSFET is demonstrated in which modulation doping is used to control the threshold voltage without degrading the channel mobility. A novel device design consisting of a graded SiGe channel, an n/sup +/ polysilicon gate, and p/sup +/ modulation doping is used. A boron-doped layer is located underneath the graded and undoped SiGe channel to minimize process sensitivity and maximize transconductance. Low-field hole mobilities of 220 cm/sup 2//V-s at 300 K and 980 cm/sup 2//V-s at 82 K were achieved in functional submicrometer p-MOSFETs.<>

Published in:

Electron Device Letters, IEEE  (Volume:12 ,  Issue: 8 )