By Topic

Modeling network traffic with multifractal behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nogueira, A. ; Inst. of Telecommun., Aveiro Univ., Portugal ; Salvador, P. ; Valadas, R.

The traffic engineering of IP networks requires accurate characterization and modeling of network traffic due to the growing diversity of multimedia applications and the need to efficiently support QoS differentiation in the network. In recent years, several types of traffic behavior that can have significant impact on network performance were discovered: long-range dependence, self-similarity, and more recently, multifractality. The extent to which a traffic model needs to incorporate these characteristics is still the subject of much research. In this work, we address the modeling of network traffic multifractality by evaluating the performance of three models, which cover a wide range of traffic types, as mathematical descriptors of measured traffic traces showing multifractal behavior. We resort to traffic traces measured both at the University of Aveiro and at a Portuguese ISP. For the traffic models, we selected a Markov modulated Poisson process as an example of Markovian model, the well known fractional Gaussian noise model as an example of a self-similar process and the conservative cascade model as an example of a multifractal model. These models are evaluated comparing the density function, the autocovariance and the loss rate queuing behavior of the measured traces and of traces synthesized from the fitted models. Results show that the fractional Gaussian noise model is not able to perform a good fitting of the first and second order statistics as well as the loss rate queuing behavior, while the Markovian and the conservative cascade models both give similar and very good results. The cascade model is intrinsically multifractal, thus the obtained results are not surprising. The good performance of the Markovian model can be attributed to the parameter fitting procedure, that aggregates distinct sub-processes operating in different time scales, and matches closely both the first and second order statistics of the traffic. The poor performance of the self-similar model can be explained mainly by its lack of parameters.

Published in:

Telecommunications, 2003. ICT 2003. 10th International Conference on  (Volume:2 )

Date of Conference:

23 Feb.-1 March 2003