Cart (Loading....) | Create Account
Close category search window
 

Compiler optimization-space exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Triantafyllis, S. ; Departments of Comput. Sci. & Electr. Eng., Princeton Univ., NJ, USA ; Vachharajani, M. ; Vachharajani, N. ; August, D.I.

To meet the demands of modern architectures, optimizing compilers must incorporate an ever larger number of increasingly complex transformation algorithms. Since code transformations may often degrade performance or interfere with subsequent transformations, compilers employ predictive heuristics to guide optimizations by predicting their effects a priori. Unfortunately, the unpredictability of optimization interaction and the irregularity of today's wide-issue machines severely limit the accuracy of these heuristics. As a result, compiler writers may temper high variance optimizations with overly conservative heuristics or may exclude these optimizations entirely. While this process results in a compiler capable of generating good average code quality across the target benchmark set, it is at the cost of missed optimization opportunities in individual code segments. To replace predictive heuristics, researchers have proposed compilers which explore many optimization options, selecting the best one a posteriori. Unfortunately, these existing iterative compilation techniques are not practical for reasons of compile time and applicability. We present the Optimization-Space Exploration (OSE) compiler organization, the first practical iterative compilation strategy applicable to optimizations in general-purpose compilers. Instead of replacing predictive heuristics, OSE uses the compiler writer's knowledge encoded in the heuristics to select a small number of promising optimization alternatives for a given code segment. Compile time is limited by evaluating only these alternatives for hot code segments using a general compile-time performance estimator An OSE-enhanced version of Intel's highly-tuned, aggressively optimizing production compiler for IA-64 yields a significant performance improvement, more than 20% in some cases, on Itanium for SPEC codes.

Published in:

Code Generation and Optimization, 2003. CGO 2003. International Symposium on

Date of Conference:

23-26 March 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.