By Topic

Relative timing [asynchronous design]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. S. Stevens ; Strategic CAD Labs., Intel Corp., Hillsboro, OR, USA ; R. Ginosar ; S. Rotem

Relative timing (RT) is introduced as a method for asynchronous design. Timing requirements of a circuit are made explicit using relative timing. Timing can be directly added, removed, and optimized using this style. RT synthesis and verification are demonstrated on three example circuits, facilitating transformations from speed-independent circuits to burst-mode and pulse-mode circuits. Relative timing enables improved performance, area, power, and functional testability of up to a factor of 3/spl times/ in all three cases. This method is the foundation of optimized timed circuit designs used in an industrial test chip, and may be formalized and automated.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:11 ,  Issue: 1 )