System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Multi-objective optimization of interconnect geometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wildman, R.A. ; Dept. of Electr. & Comput. Eng., Univ. of Delaware, Newark, DE, USA ; Kramer, J.I. ; Weile, Daniel S. ; Christie, P.

The rapid increase in the number of wiring layers due to improved planarization and metallization techniques permits spatial resources to be traded for improved performance. Yield, power dissipation and propagation delay are all sensitive to the selection of the pitch and width of wires in each layer. As in many other engineering design problems, however, there exists no unique solution which simultaneously optimizes all aspects of system performance. The best that can be achieved is the identification of the optimal surface within the multi-objective performance space. A single design can be chosen from this list a posteriori using additional selection criteria which may depend, for example, on the specific details of the product application. This paper investigates the use of Pareto genetic algorithms to explore the extent of multi-objective optimal surfaces. The tradeoffs between yield, power-dissipation and cycle time for a benchmark netlist are examined as a function of in-plane geometry for a seven-layer interconnect.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:11 ,  Issue: 1 )