By Topic

Passive and active assistance for human performance of a simulated underactuated dynamic task

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O'Malley, M.K. ; Mech. Eng. & Mater. Sci., Rice Univ., Houston, TX, USA ; Gupta, A.

Machine-mediated training of dynamic task completion is typically implemented with passive intervention via virtual fixtures or active assist by means of record and replay strategies. During interaction with a real dynamic system however, the user relies on both visual and haptic feedback real-time in order to elicit desired motions. This work investigates human performance in a Fitts' type targeting task with an underactuated dynamic system. Performance, in terms of number of hits and between-target tap times, is measured while various passive and active control modes are displayed concurrently with the haptic feedback from the simulated system's own dynamic behavior. It Is hypothesized that passive and active assist modes that are implemented during manipulation of simulated underactuated systems could be beneficial in rehabilitation applications. Results indicate that human performance can be improved significantly with the passive and active assist modes.

Published in:

Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings. 11th Symposium on

Date of Conference:

22-23 March 2003