By Topic

A cost analysis of very large scale PV (VLS-PV) system on the world deserts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
K. Kurokawa ; Tokyo Univ. of Agric. & Technol., Japan ; K. Kato ; M. Ito ; K. Komoto
more authors

To preserve the Earth, a 100 MW very large-scale photovoltaic power generation (VLS-PV) system is estimated assuming that it is installed on the world deserts, which are Sahara, Negev, Thar, Sonora, Great Sandy and Gobi desert. These deserts are good for installing the system because of large solar irradiation and large land area. A PV array is dimensioned in detail in terms of array layout, support, foundation, wiring and so on. Then generation cost of the system is estimated based on the methodology of life-cycle cost (LCC). As a result of the estimation, the generation cost is calculated as 5.3 cent/kWh on Sahara desert, 6.4 cent/kWh on Gobi desert assuming PV module price of $1.0/W, system lifetime of 30 years and interest rate of 3%. These results suggest that VLS-PV systems are economically feasible on sufficient irradiation site even if existing PV system technologies are applied, when PV module price will decrease to a level of $1.0/W.

Published in:

Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE

Date of Conference:

19-24 May 2002