By Topic

Rotation of Coulomb crystals in a magnetized inductively coupled complex plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cheung, F.M.H. ; SoCPES, Flinders Univ. of South Australia, Adelaide, SA, Australia ; Prior, N.J. ; Mitchell, L.W. ; Samarian, A.A.
more authors

Under suitable conditions, micron-sized dust particles introduced into inductively coupled argon plasma form a stable microscopic crystal lattice, known as a Coulomb (or plasma) crystal. In the experiment described, an external axial magnetic field was applied to various configurations of Coulomb crystal, including small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The crystals were observed to rotate collectively under the influence of the magnetic field. This paper describes the experimental procedures and the preliminary results of this investigation.

Published in:

Plasma Science, IEEE Transactions on  (Volume:31 ,  Issue: 1 )