Cart (Loading....) | Create Account
Close category search window
 

Jitter transfer characteristics of delay-locked loops - theories and design techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Lee, M.-J.E. ; Velio Commun. Inc., Milpitas, CA, USA ; Dally, W.J. ; Greer, T. ; Hiok-Tiaq Ng
more authors

This paper presents analyses and experimental results on the jitter transfer of delay-locked loops (DLLs). Through a z-domain model, we show that in a widely used DLL configuration, jitter peaking always exists and high-frequency jitter does not get attenuated as previous analyses suggest. This is true even in a first-order DLL and an overdamped second-order DLL. The amount of jitter peaking is shown to trade off with the tracking bandwidth and, therefore, the acquisition time. Techniques to reduce jitter amplification by loop filtering and phase filtering are discussed. Measurements from a prototype chip incorporating the discussed techniques confirm the prediction of the analytical model. In environments where the reference clock is noisy or where multiple timing circuits are cascaded, this jitter amplification effect should be carefully evaluated.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:38 ,  Issue: 4 )

Date of Publication:

Apr 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.