By Topic

What designers of bus and network architectures should know about hypercubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
LaForge, L.E. ; Right Stuff of Tahoe Inc., Reno, NV, USA ; Korver, K.F. ; Fadali, M.S.

We quantify why, as designers, we should prefer clique-based hypercubes (K-cubes) over traditional hypercubes based on cycles (C-cubes). Reaping fresh analytic results, we find that K-cubes minimize the wirecount and, simultaneously, the latency of hypercube architectures that tolerate failure of any f nodes. Refining the graph model of Hayes (1976), we pose the feasibility of configuration as a problem in multivariate optimization: What (f+1)-connected n-vertex graphs with fewest edges [n(f+1)/2] minimize the maximum a) radius or b) diameter of subgraphs (i.e., quorums) induced by deleting up to f vertices? We solve (1) for f that is superlogarithmic but sublinear in n and, in the process, prove: 1) the fault tolerance of K-cubes is proportionally greater than that of C-cubes; 2) quorums formed from K-cubes have a diameter that is asymptotically convergent to the Moore Bound on radius; 3) under any conditions of scaling, by contrast, C-cubes diverge from the Moore Bound. Thus, K-cubes are optimal, while C-cubes are suboptimal. Our exposition furthermore: 4) counterexamples, corrects, and generalizes a mistaken claim by Armstrong and Gray (1981) concerning binary cubes; 5) proves that K-cubes and certain of their quorums are the only graphs which can be labeled such that the edge distance between any two vertices equals the Hamming distance between their labels; and 6) extends our results to K-cube-connected cycles and edges. We illustrate and motivate our work with applications to the synthesis of multicomputer architectures for deep space missions.

Published in:

Computers, IEEE Transactions on  (Volume:52 ,  Issue: 4 )