Cart (Loading....) | Create Account
Close category search window
 

Hidden tree Markov models for document image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Diligenti, M. ; Dipt. di Ingegneria dell''Informazione, Siena Univ., Italy ; Frasconi, P. ; Gori, M.

Classification is an important problem in image document processing and is often a preliminary step toward recognition, understanding, and information extraction. In this paper, the problem is formulated in the framework of concept learning and each category corresponds to the set of image documents with similar physical structure. We propose a solution based on two algorithmic ideas. First, we obtain a structured representation of images based on labeled XY-trees (this representation informs the learner about important relationships between image subconstituents). Second, we propose a probabilistic architecture that extends hidden Markov models for learning probability distributions defined on spaces of labeled trees. Finally, a successful application of this method to the categorization of commercial invoices is presented.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 4 )

Date of Publication:

April 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.