By Topic

Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Bilenca, A. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Alizon, R. ; Mikhelashhvili, V. ; Dahan, D.
more authors

Wavelength conversion based on four-wave mixing (FWM) and cross-gain modulation (XGM) is experimentally demonstrated for the first time in a 1550-nm InAs-InP quantum-dash semiconductor optical amplifier. Continuous-wave FWM with a symmetric conversion efficiency dependence on detuning direction and FWM mediated short-pulse wavelength conversion are demonstrated. Using XGM, we have successfully implemented short-pulse wavelength conversion over 10 THz and error-free data conversion of a 2.5-Gb/s data sequence over 7.5 THz. The pulsed XGM experiments suggest that adjacent regions within an inhomogeneously broadened gain spectrum are partially coupled which increases the operational bandwidth, but at the expense of speed.

Published in:

Photonics Technology Letters, IEEE  (Volume:15 ,  Issue: 4 )