By Topic

Space mapping technique for design optimization of antireflection coatings in photonic devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ning-Ning Feng ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada ; Gui-Rong Zhou ; Huang, Wei-Ping

Space-mapping (SM) technique is applied for design optimization of antireflection (AR) coatings for photonic devices such as the semiconductor optical amplifiers (SOA). The approximate and efficient transfer matrix method (TMM) serves as the coarse model for design optimization, whereas the time-intensive and accurate finite-difference time-domain (FDTD) method is used as the fine model for model calibration. A mapping is established between the parameter spaces of the coarse and the fine models so that the fine model design becomes the inverse mapping of the optimized coarse model design. Remarkable performance of the SM technique in terms of efficiency and accuracy in the design optimization is demonstrated by way of examples. It is shown that, in the context of multilayer coating design, the desired broadband ultralow reflectivities can be obtained within three fine model (FDTD) calculations.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 1 )