By Topic

Improved techniques for the measurement of phase error in waveguide based optical devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Chen ; Comput. Sci. & Electr. Eng. Dept., Univ. of Maryland Baltimore County, MD, USA ; Yung-Jui Chen ; Ming Yan ; McGinnis, B.
more authors

Phase-error measurement using an incoherent light source and information in the resulting interferograms is an effective technique for characterizing waveguide-based optical devices. We propose a new analysis scheme that utilizes Hilbert transformation along with an increased data sampling rate of the interferogram. The higher data sampling rate makes the measurement more noise tolerant and improves the accuracy of the resulting phase determination to 0.2°. This technique enables a "windowing" analysis method that is capable of testing waveguides with very small path length differences. We also present a new analysis tool for device characterization by creating a "phase trend" plot that detects different optical modes propagating within the waveguide.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 1 )