Cart (Loading....) | Create Account
Close category search window
 

Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sano, Y. ; Electron. Equip. Technol. Lab., Fuji Electr. Corp. R&D Ltd., Kanagawa, Japan ; Yoshino, T.

A new type of interrogator for distributed fiber Bragg grating (FBG) sensors that employs an arrayed waveguide grating (AWG) is proposed and its operating features are in detail investigated both theoretically and experimentally. The remedy for achieving the linear characteristics of wavelength detection as well as for insuring the reliable and environmentally stable operation of interrogation is proposed and its usefulness is demonstrated in good agreement with the experimental results. The developed interrogator consists of a fully passive, small, all-solid, rugged optical IC and can detect wavelengths of a great number of FBG sensors with high precision better than 0.5 pm and high speed.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 1 )

Date of Publication:

Jan 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.