By Topic

Sea-floor classification using multibeam echo-sounding angular backscatter data: a real-time approach employing hybrid neural network architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chakraborty, B. ; Nat. Inst. of Oceanogr., Goa, India ; Kodagali, V. ; Baracho, J.

The presently studied numerical model, e.g., composite roughness, is successful for the purpose of seafloor classification employing processed multibeam angular backscatter data from manganese-nodule-bearing locations of the Central Indian Ocean Basin. Hybrid artificial neural network (ANN) architecture, comprised of the self-organizing feature map and learning vector quantization (LVQ), has been implemented as an alternative technique for sea-floor roughness classification, giving comparative results with the aforesaid numerical model for processed multibeam angular backscatter data. However, the composite-roughness model approach is protracted due to the inherent need for processed data including system-gain corrections. In order to establish that tedious processing of raw backscatter values is unessential for efficient classification, hybrid ANN architecture has been attempted here due to its nonparametric approach. In this technical communication, successful employment of LVQ algorithm for unprocessed (raw) multibeam backscatter data indicates true real-time classification application.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:28 ,  Issue: 1 )