Cart (Loading....) | Create Account
Close category search window
 

An overview of glide testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nayak, U.V. ; Almaden Res. Center, IBM Res., San Jose, CA, USA ; Lee, C.K. ; O'Sullivan, T.C. ; Hernandez-Fernandez, J.
more authors

Low flying air-bearings, "sliders," with contact sensors are used to "glide" test magnetic recording disks to be free of asperities above a predetermined height. A technical overview of the considerations necessary for accurate glide testing is illustrated by the example of an experimental flat plate PZT sensor, with electrodes divided into quadrants, to detect asperity contact. The flat plate PZT sensor detects the slider dynamic pitch, roll, and vertical vibrations of the air bearing by contact with asperities of sufficient mechanical stiffness. The sensor also detects contact by the extremely sensitive response of the resonant vibrations of the PZT/slider structure. Different linear combinations of the signal from the quadrants show mode selection based on mode symmetry. The signal response for increasing asperity interference is characterized for specific modes and a mode can be chosen by the appropriate linear combination of the signals from the quadrants. Calibration of the glide slider trailing edge flying height and roll using contact with artificial bumps of different heights is necessary for accurate glide testing. One can map the entire disk surface using the contact signal from both the air-bearing response and the bending mode response simultaneously to identify mechanically "stiff" asperities.

Published in:

Magnetics, IEEE Transactions on  (Volume:39 ,  Issue: 2 )

Date of Publication:

Mar 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.