By Topic

Modeling of electrowetted surface tension for addressable microfluidic systems: dominant physical effects, material dependences, and limiting phenomena

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Shapiro ; Maryland Univ., College Park, MD, USA ; Hyejin Moon ; R. Garrell ; Chang-Jin Kim

This paper describes the equilibrium shape of a liquid drop under applied fields such as gravity and electrical fields, taking into account material properties such as dielectric constants, resistivities, and surface tension coefficients. The analysis is based on an energy minimization framework, scaling arguments, and on solutions of Maxwell's electrostatic equations. A rigorous and exact link is provided between the energy function corresponding to any given physical phenomena, and the resulting shape and size dependent force term in the (modified) Young's equation. It is shown that a dielectric solid and a perfectly conducting liquid is all that is needed to exactly recover the Young-Lippmann equation. A dielectric liquid on a conducting solid gives rise to line tension terms. Finally, a slightly resistive liquid on top of a dielectric, highly resistive solid gives rise to contact angle saturation and accurately predicts the experimental data that we observe in our electrowetting devices.

Published in:

Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on

Date of Conference:

19-23 Jan. 2003