Cart (Loading....) | Create Account
Close category search window

A recurrent log-linearized Gaussian mixture network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tsuji, T. ; Dept. of Artificial Complex Syst. Eng., Hiroshima Univ., Higashi, Japan ; Nan Bu ; Fukuda, O. ; Kaneko, M.

Context in time series is one of the most useful and interesting characteristics for machine learning. In some cases, the dynamic characteristic would be the only basis for achieving a possible classification. A novel neural network, which is named "a recurrent log-linearized Gaussian mixture network (R-LLGMN)," is proposed in this paper for classification of time series. The structure of this network is based on a hidden Markov model (HMM), which has been well developed in the area of speech recognition. R-LLGMN can as well be interpreted as an extension of a probabilistic neural network using a log-linearized Gaussian mixture model, in which recurrent connections have been incorporated to make temporal information in use. Some simulation experiments are carried out to compare R-LLGMN with the traditional estimator of HMM as classifiers, and finally, pattern classification experiments for EEG signals are conducted. It is indicated from these experiments that R-LLGMN can successfully classify not only artificial data but real biological data such as EEG signals.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

Mar 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.