By Topic

A new class of quasi-Newtonian methods for optimal learning in MLP-networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bortoletti, A. ; Dipt. di Matematica, Univ. di Roma "Tor Vergata", Rome, Italy ; Di Fiore, C. ; Fanelli, S. ; Zellini, P.

In this paper, we present a new class of quasi-Newton methods for an effective learning in large multilayer perceptron (MLP)-networks. The algorithms introduced in this work, named LQN, utilize an iterative scheme of a generalized BFGS-type method, involving a suitable family of matrix algebras L. The main advantages of these innovative methods are based upon the fact that they have an O(nlogn) complexity per step and that they require O(n) memory allocations. Numerical experiences, performed on a set of standard benchmarks of MLP-networks, show the competitivity of the LQN methods, especially for large values of n.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 2 )