By Topic

Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ottman, G.K. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA ; Hofmann, H.F. ; Lesieutre, G.A.

An optimized method of harvesting vibrational energy with a piezoelectric element using a step-down DC-DC converter is presented. In this configuration, the converter regulates the power flow from the piezoelectric element to the desired electronic load. Analysis of the converter in discontinuous current conduction mode results in an expression for the duty cycle-power relationship. Using parameters of the mechanical system, the piezoelectric element, and the converter; the "optimal" duty cycle can be determined where the harvested power is maximized for the level of mechanical excitation. It is shown that, as the magnitude of the mechanical excitation increases, the optimal duty cycle becomes essentially constant, greatly simplifying the control of the step-down converter. The expression is validated with experimental data showing that the optimal duty cycle can be accurately determined and maximum energy harvesting attained. A circuit is proposed which implements this relationship, and experimental results show that the converter increases the harvested power by approximately 325%.

Published in:

Power Electronics, IEEE Transactions on  (Volume:18 ,  Issue: 2 )