Cart (Loading....) | Create Account
Close category search window

Probabilistic reliable dissemination in large-scale systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kermarrec, A.-M. ; Microsoft Res., Cambridge, UK ; Massoulie, L. ; Ganesh, A.J.

The growth of the Internet raises new challenges for the design of distributed systems and applications. In the context of group communication protocols, gossip-based schemes have attracted interest as they are scalable, easy to deploy, and resilient to network and process failures. However, traditional gossip-based protocols have two major drawbacks: 1) they rely on each peer having knowledge of the global membership; and 2) being oblivious to the network topology, they can impose a high load on network links when applied to wide-area settings. In this paper, we provide a theoretical analysis of gossip-based protocols which relates their reliability to key system parameters (the system size, failure rates, and number of gossip targets). The results provide guidelines for the design of practical protocols. In particular, they show how reliability can be maintained while alleviating drawback by: 1) providing each peer with only a small subset of the total membership information and drawback; and 2) organizing members into a hierarchical structure that reflects their proximity according to some network-related metric. We validate the analytical results by simulations and verify that the hierarchical gossip protocol considerably reduces the load on the network compared to the original, non-hierarchical protocol.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:14 ,  Issue: 3 )

Date of Publication:

March 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.