By Topic

Parallel computation of the Euclidean distance transform on a three-dimensional image array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Hua Lee ; Inf. & Commun. Res. Div., Chung-Shan Inst. of Sci. & Technol., Tao-Yuan, Taiwan ; Shi-Jinn Horng ; Seltzer, J.

In a two- or three-dimensional image array, the computation of Euclidean distance transform (EDT) is an important task. With the increasing application of 3D voxel images, it is useful to consider the distance transform of a 3D digital image array. Because the EDT computation is a global operation, it is prohibitively time consuming when performing the EDT for image processing. In order to provide the efficient transform computations, parallelism is employed. We first derive several important geometry relations and properties among parallel planes. We then, develop a parallel algorithm for the three-dimensional Euclidean distance transform (3D-EDT) on the EREW PRAM computation model. The time complexity of our parallel algorithm is O(log2 N) for an N×N×N image array and this is currently the best known result. A generalized parallel algorithm for the 3D-EDT is also proposed. We implement the proposed algorithms sequentially, the performance of which exceeds the existing algorithms (proposed by Yamada, 1984). Finally, we develop the corresponding parallel programs on both the emulated EREW PRAM model computer and the IBM SP2 to verify the speed-up properties of the proposed algorithms.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:14 ,  Issue: 3 )