By Topic

Combining few neural networks for effective secondary structure prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guimaraes, K.S. ; Center of Informatics, UFPE, Recife, Brazil ; Melo, J.C.B. ; Cavalcanti, G.D.C.

The prediction of secondary structure is treated with a simple and efficient method. Combining only three neural networks, an average Q3 accuracy prediction by residues of 75.93% is achieved. This value is better than the best results reported on the same test and training database, CB396, using the same validation method. For a second database, RS126, an average Q3 accuracy of 74.13% is attained, which is better than each individual method, being defeated only by CONSENSUS, a rather intricate engine, which is a combination of several methods. The networks are trained with RPROP an efficient variation of the back-propagation algorithm. Five combination rules are applied independently afterwards. Each one increases the accuracy of prediction by at least 1%, due to the fact that each network used converges to a different local minimum. The Product rule derives the best results. The predictor described here can be accessed at http://biolab.cin.ufpe.br/tools/.

Published in:

Bioinformatics and Bioengineering, 2003. Proceedings. Third IEEE Symposium on

Date of Conference:

10-12 March 2003