By Topic

A repulsive clustering algorithm for gene expression data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chyun-Shin Cheng ; Dept. of Electron. Eng., Tung Nan Inst. of Technol., Taipei, Taiwan ; Shiuan-Sz Wang

Facing the development of microarray technology, clustering is currently a leading technique to gene expression data analysis. In this paper we propose a novel algorithm called repulsive clustering, which is developed for the use of gene expression data analysis. Our performance demonstration on several synthetic and real gene expression data sets show that the repulsive clustering algorithm, compared with some other well-known clustering algorithms, is capable of not only producing even higher quality output, but also easier to implement for immediate use on various situations.

Published in:

Bioinformatics and Bioengineering, 2003. Proceedings. Third IEEE Symposium on

Date of Conference:

10-12 March 2003