Cart (Loading....) | Create Account
Close category search window
 

A fast algorithm for RNA secondary structure prediction including pseudoknots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Many important RNA molecules contain pseudoknots, which are generally excluded by the definition of the secondary structure, mainly for computational reasons. Still, most existing algorithms for secondary structure prediction are not satisfactory in results and complexities, even when pseudoknots are not allowed. We present an algorithm, called P-DCFold, for the prediction of RNA secondary structures including all kinds of pseudoknots. It is based on the comparative approach. The helices are searched recursively, from more "likely" to less "likely", using the "Divide and Conquer" approach. This approach, which allows to limit the amount of searching, is possible when only non-interleaved helices are searched for. The pseudoknots are therefore searched in several steps, each helix of the pseudoknot being selected in a different step. P-DCFold has been applied to tmRNA and RnaseP sequences. In less than two seconds, their respective secondary structures, including their pseudoknots, have been recovered very efficiently.

Published in:

Bioinformatics and Bioengineering, 2003. Proceedings. Third IEEE Symposium on

Date of Conference:

10-12 March 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.