By Topic

Blind adaptive decision fusion for distributed detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mirjalily, G. ; Dept. of Electr. Eng., Yazd Univ., Iran ; Zhi-Quan Luo ; Davidson, T.N. ; Bosse, E.

We consider the problem of decision fusion in a distributed detection system. In this system, each detector makes a binary decision based on its own observation, and then communicates its binary decision to a fusion center. The objective of the fusion center is to optimally fuse the local decisions in order to minimize the final error probability. To implement such an optimal fusion center, the performance parameters of each detector (i.e., its probabilities of false alarm and missed detection) as well as the a priori probabilities of the hypotheses must be known. However, in practical applications these statistics may be unknown or may vary with time. We develop a recursive algorithm that approximates these unknown values on-line. We then use these approximations to adapt the fusion center. Our algorithm is based on an explicit analytic relation between the unknown probabilities and the joint probabilities of the local decisions. Under the assumption that the local observations are conditionally independent, the estimates given by our algorithm are shown to be asymptotically unbiased and converge to their true values at the rate of O(1/k12/) in the rms error sense, where k is the number of iterations. Simulation results indicate that our algorithm is substantially more reliable than two existing (asymptotically biased) algorithms, and performs at least as well as those algorithms when they work.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:39 ,  Issue: 1 )