By Topic

Current-sensing techniques for DC-DC converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Forghani-zadeh, H.P. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Rincon-Mora, G.A.

Current sensing is one of the most important functions on a smart power chip. Conventional current-sensing methods insert a resistor in the path of the current to be sensed. This method incurs significant power losses, especially when the current to be sensed is high. Lossless current-sensing methods address this issue by sensing the current without dissipating the power that passive resistors do. Six available lossless current sensing techniques are reviewed. A new scheme for increasing the accuracy of current sensing when the discrete elements are not known is introduced. The new scheme measures the inductor value during the DC-DC controller startup.

Published in:

Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on  (Volume:2 )

Date of Conference:

4-7 Aug. 2002