By Topic

Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, Yu ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA ; Santiago-Aviles, J.J. ; Furlan, R. ; Ramos, I.

Carbon nanofibers were produced from polyacrylonitrile/N, N-Dimethyl Formamide (PAN/DMF) precursor solution using electrospinning and vacuum pyrolysis at temperatures from 773-1273 K for 0.5, 2, and 5 h, respectively. Their conductance was determined from I-V curves. The length and cross-section area of the nanofibers were evaluated using optical microscope and scanning probe microscopes, respectively, and were used for their electrical conductivity calculation. It was found that the conductivity increases sharply with the pyrolysis temperature, and increases considerably with pyrolysis time at the lower pyrolysis temperatures of 873, 973, and 1073 K, but varies, less obviously, with pyrolysis time at the higher pyrolysis temperatures of 1173 and 1273 K. This dependence was attributed to the thermally activated transformation of disordered to graphitic carbon.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:2 ,  Issue: 1 )