Cart (Loading....) | Create Account
Close category search window
 

Reliability scaling issues for nanoscale devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
McMahon, W. ; Beckman Inst., Univ. of Illinois, Urbana, IL, USA ; Haggag, A. ; Hess, K.

We discuss two specific scaling issues that can result in qualitative changes in device reliability prediction for nanoscale devices. The first of these involves a rapid increase in early failures due to a distribution of activation energies of defect precursors. We show that the slopes of the failure functions for hot carrier interface state generation (HCI) and time-dependent dielectric breakdown (TDDB) have simple physical interpretations in terms of a geometrical factor and the activation energy distribution width. The second issue involves a transition from single to multiple electrons causing individual defects. This picture allows simple physical explanations for the larger HCI damage in NMOS versus PMOS, the anomalous isotope effect of activation energies for HCI in the lucky electron model, and the observed power law dependence of the time to breakdown versus voltage for TDDB for ultrathin oxides.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:2 ,  Issue: 1 )

Date of Publication:

Mar 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.