By Topic

Self-learning fuzzy sliding-mode control for antilock braking systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lin, Chih-Min ; Dept. of Electr. Eng., Yuan-Ze Univ., Hsinchu, Taiwan ; Chun-Fei Hsu

The antilock braking system (ABS) is designed to optimize braking effectiveness and maintain steerability; however, the ABS performance will be degraded in the case of severe road conditions. In this study, a self-learning fuzzy sliding-mode control (SLFSMC) design method is proposed for ABS. The SLFSMC ABS will modulate the brake torque for optimum braking. The SLFSMC system is comprised of a fuzzy controller and a robust controller. The fuzzy controller is designed to mimic an ideal controller and the robust controller is designed to compensate for the approximation error between the ideal controller and the fuzzy controller. The tuning algorithms of the controller are derived in the Lyapunov sense; thus, the stability of the system can be guaranteed. Also, the derivation of the proposed SLFSMC ABS does not need to use a vehicle-braking model. Simulations are performed to demonstrate the effectiveness of the proposed SLFSMC ABS in adapting to changes for various road conditions.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:11 ,  Issue: 2 )